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Abstract

In this paper we discuss the regularity of the eigenfunctions of eigen-

value problems with piecewise analytic data and the approximation of the

eigenvalues and eigenfunctions of such problems. A detailed and systematic

numerical study of these approximations is presented, together with an

analysis of the numerical results in light of the theoretical results. The

specific aim is to assess the reliability of the theoretical results - which

are of an asymptotic nature - as a guide to practical computations - which

may take place in the preasymptotic phase - and to look for characteristic

features of the numerical results which are not completely explained by known

theoretical results.
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Regularity and Numerical Solution of Elgenvalue Problems

with Piecewise Analytic Data

1. Introduction

The purpose of this paper is to discuss the regularity of the eigenfunc-

tions of eigenvalue problems with piecewise analytic data and the approxima-

tion of the eigenpairs of such eigenvalue problems by the finite element

method, and to present the results of a detailed and systematic numerical

study of these approximations.

[1] contains an analysis of the regularity properties of the solutions of

elliptic boundary value problems with piecewise analytic data. Specifically,

it is shown that the solution of such a problem belongs to a countably normed

space B 2(). In [2] this fact is used to show that the h-p version of the
s 3 I

finite element method has an exponential rate of convergence. (For a survey

of the basic results on the h-p version of the finite element method and for

relevant references we refer to [3] and [4].) In this paper we make a

parallel study of the regularity and approximability of the eigenfunctions of

eigenvalue problems with piecewise analytic data. We then discuss the impli-

cations of this approximability for the approximation of eigenvalues and

eigenfunctions by the finite element method.

Section 2 contains background information, Section 3 describes the eigen-

value problems we treat, Section 4 presents a regularity result for eigenfunc-

tions In terms of countably normed spaces, Section 5 surveys (abstract)

results on eigenvalue and eigenfunction approximation by finite element

methods, and Section 6 reports the results of a detailed and systematic

numerical study of eigenvalue approximation by finite element methods and

presents the conclusions of this study.



2. Notation and Preliminaries

2Let Q c F be a simply connected, bounded domain with boundary F =Q,

M
and assume that r = U r where ri, for i = 1,...,M, is an analytici=l .. .

simple arc connecting the vertices A and A (A0 = AM) r will denote
i-i i 0 M I

r I-{A i-A }. The interior angle at Ai will be denoted by w .. This

notational scheme is shown in Figure 2.1.

A3

w3

7M-I MI 

AM-I %

FM ¢M ¢W1

AM Al

Figure 2.1. Notational Scheme for 02 and r =a.

We will assume 0 < w. < 2n. w. = 2n corresponds to a slit in 92. If W. <1 1 1 .

2n for all i, we will call !2 a Lipschitz domain (F will be a Lipschitz ,

curve in this case). If the arcs r. are straight lines, we say Ql is a1

straight polygon or simply a polygon; otherwise we will refer to 2 as a

curvilinear polygon. We let

0-
rF= Ur.

lED

where D is a subset of {1. M}, and let

2.1
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r= r-rO.

Then

0 1
r= r ur

r will be referred to as the Dirichlet boundary and r as the Neumann

boundary. We will often consider the special domains

S = S(w,6) = {(r,e) : 0 < r < 6, 0 < 0 < 0d,

where (r,O) denotes the polar coordinates of x. In connection with S we

introduce the notation

Fi(w,6) = {(r,O) : 0 < r < 6, 0 = 01,

Fr(c,6) = {(r,8) 0 < r < 6, 0 = c}.
2'

By H (0), for m > 0 an integer, we denote the standard Sobolev space

of functions u for which

I-,,

(2.1) lull 2 =iD'ull 2 < Co.Hm(0 ) 2
Hl m li<mr L-U2

where D u - al lu Iwith a = (al a2) , a > 0 integers, and lal=
axal1 B a2

a I 2' We note that lullH0() = ll Let

H1 (0) = {u u E H1 (0), u = 0 on rOy;

' [? ,,°-,, 1/2on H ) we can use either !ull or L ull

0() if-1(i)a 2 (Q1/

Let

r.(x)= dist(x,A.)= Ix-A., I
J J J

r.(x) = min(1,r.(x)),
* jJ

'a3
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an d(1 ... 1M where 0 < fi < 1,

and

k = an integer,

and define

4 x+kCx) = II (r Cx))+k

i=lk1

t3 mj
If 0=S, we let D r. By H,(0), with m and t integers satis-

fying 0 < t < m, we denote the weighted Sobolev space characterized by the

%. norm

m
ull 2 + 4k DCU 12 , if t > i

HE- (0) f3+k-t H(Q)
(2.2) lull2m ( ) -

k=t Ixl=k

H, 3 ( ) 
2P D , e = 0.

k=O iai=k

H 0,0 () will also be denoted by L (0).

(3 f

We will also use the countably normed spaces

a k-(
(C) = {u u H (Q), !I (D Cd (k-),

(3+k-ep HC0 ()

(2.3) for loI = k, k = e+I,.... where C >_ 1 and

d > 1 are independent of k

and

2 H2 2 ) auxl Cd k k.
(02) 2, ID%(x) < k!(D (x))

(3[3 k+13-1

(2.4) for Ici= k, k = 1,2,..... where C > 1 and

d _> 1 are independent of k}.

In the case when 0 = S(w,8) we let

:"... ,...... ... ......... ..°.... ,.. ... .. .. . ... .. ... .... ...,...-...,.-- -.... .,...-.... .. ....-,.-.. ...- ...-., ... ..-. -..:.:
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(X_ a u U

ar Ia 2
OO r le2

and then define the spaces HB' (S), with 0 < t _ m, and 0 < (3 < 1, which
fd

are characterized by the norm

m
),t2  1 ]r'-t+13) /( a 2f

u H r-I (S) H s)0  , i f

(2.5) u 2  (k=R laj=k

2 Er ti ul 2  , 0= o.

k=O Il=k H CS)

U~ 0
,3' (S) will also be denoted by Y(3(S). Note that L R(S) = t (S). Further-

more, we let R (S) be the space characterized by the norm

lull 2 = lul 20 + j lr'l-:Dcull 20
i{ (S) H (S) H OS)

2Note that this is just lull expressed in polar coordinates.

H (S)

We now state some lemmas we will use in the sequel.

Lemma 2.1. The spaces "fj'j(S) and H 'J(S) are equal for j = 0,1,2,
(3 t3

i.e., the norms lull and lull . are equivalent for j = 0,1,2.jt 'J(s) H 'J (S)

This result is obvious if j = 0,1. For a proof in the case j = 2, see

Lemma 1.1 of [1].

Lemma 2.2. Suppose 0 _< t: _ 2 and k 1 e. Then

a k- e(2.6) lit +kuil 0 s Cdk-k-)! for any a

with lal = k

if and only if



Fc 011/2
(2.7) [sDu2r 2 Pfk'trdrdl

:5 Ed k'-e)!- for all a.'

with t:5 Ic' I =k' :5k.

For the proof of this result see Theorem 1.1 of [1 1

Lemma 2.3. Let U E H (S(w,5)) satisfy i
(2.8) -Au =f on S(w,6)

and suppose

(a)

(2.8Ba) u =0 on r U 2,

(b)

u 0 on F 1

(2-8b) 1a
au_ on r2

or

(c)

(2.8c) 0on r Uf2  I
Then

(2.9) 11ull2 ? 2 ~lf (S(w,8,6)) +5 lull11 (S(w,5))SIw,5/2))]

13 %I

for any a3 satisfying 0 <[3 < 1 and, in addition, 1-n/ < t3 in cases

(a) and (c) and 1 -ir2w < 13 in case (b). *
For the proof of (2.9), see the proof of Theorem 2.1, specifically the

proof of inequality (2.44), in [1]. 5

6
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2 2 2
Lemma 2.4. B (0) c LT (Q) c ( ), for any c > 0.

13 13 t3+C

For the proof of this result see Theorems 2.2 and 2.3 of [5].

7.
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3. The Eigenvalue Problem

Let 0 be a straight or curved polygon, and consider the selfadjoint

eigenvalue problem

{ (Lu)(x) = A(Mu)(x), x (x. X2 ) e
(3.1)

(Bu)(x) = 0, x E r,

where

2

(3.2) (Lu)(x) = - j + cx)u,

i,j=l

with a. .(x) = a.. (x) and c(x) 0 analytic functions on 0 satisfying

(3.3) ai (x) 1 E 2i( i+ 2 V x E C2 and V ,2, with > 0,

i,j

where

(3.4) (Mu)(x) = d(x)u(x),

with d(x) an analytic function on Q satisfying

(3.5) d(x) : 2 >  0,

and where

lu(x), x E r 0

(3.6) (Bu)(x)= Ux.r
-(x) = -Zai.n (x), x E r

i,j 1

with n n(x) (nn denoting the exterior unit normal to r at x. If

we define the bilinear forms

(3.7) a(u,v) = a (x) au v +CUV dx
Eixj ax

8

e r ' F , e - * Ow' r W N r r r I FI



and

(3.8) b(u,v) = duvdx

on H 1(M), then (3.1) has the weak, or variational, formulation
0

Seek A E IR, 0 * u E H 1(M) satisfying
(3.9) 0 10

.a(u,v) = Xb(u,v) V v E H0 (9).

(3.9) has eigenvalues

0 < A A2  : ... +M

and corresponding eigenfunctions

ulu 2

satisfying

a(u.,uj) = ...
1,31 1,3

'p

In Section 4 we prove the following theorem on the regularity of the

eigenfunctions of (3.9).

Theorem 3.1. Suppose 0 is a straight or Lipschitz curved polygon (as

described in Section 2). Then for each j = 1,2,...,

2
uj r ( ),

where R = ( ..... )13 ' with fi satisfying

0 :5 (30 < (3. < i,
1 1

0
where ( i depends on the values a (A.) and the angle w..

1 mn 1

Remark 3.1. We have assumed 0 is simply connected. Theorem 3.1 can easily

be extended to cover multiply connected domains.

9



Remark 3.2. In Theorem 3.1 we have assumed that a..,c, and d are analytica 1J

on (. This condition can be weakened to the requirement that these functions

M
are analytic on Q- U A i, provided we impose certain growth conditions on

i=l

a..,c,d, and their derivatives.

101

.-0

U,'

a:

Fb
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4. Regularity of the Eigenfunctions

In this section we will prove Theorem 3.1. We provide the complete

details only for the case when Lu = -Au and Q is a straight polygon with

r0 = F (so that the boundary conditions are of Dirichlet type). The proof in

the general case will only be outlined since the arguments are similar to

those used in [1].

M
Lemma 4.1. The eigenfunctions of (3.9) are analytic in U = - U A.

i=l1

For the proof of this result see [6, Theorems 5.7.1 and 5.7.1'].

Proof of Theorem 3.1. Assume Q is a straight polygon, and suppose, without

loss of generality, that Ai is located at the origin and F lies along

the x -axis. Choose 0 < i < 1 so that S. =S(wi, i) c Q and S r)

- = 0. See Figure 4.1.

j~i,i+1

AFl~Lii

Figure 4.1. The Domain S,,.

Consider an eigenpair (A,u) of (3.9) and suppose iIu1 =
H (0)

Localizing to the vertex A. we let

k

(4.1) vk = r Urk, k = 0,1,2,...

, 11

-,.%%



Then, using the identity

k k-i 2 k-2 2
(r u k) = r (r Au) rk -Ar (r U) k, k - 0,

rrr

we have

F&v k = Ar k-l(r2 u) rk in S

(4.2) o -
Vk = 0 on F1 u r"2.

By Lemma 4.1, u is analytic in 2. Thus there exist constants C and d0 0

such that

(4.3) IIVkII 1 s Cod 0k, k = 0,1,...
k f 1(S -s 0 0'

6~1 8j~/2

Let us now prove that there are numbers C and d such that

k(4.4) IlV kl 1-y 2 !C , k = 0,1,2,....,-

( 61/2

0for any 0 < (3< 1 satisfying 1- n/i = 3i < f3. We will show, in fact,

that (4.4) holds provided C C I(C +A+1), d satisfies

do
0

3C A C A
1 < 1/2,

d d2 -$

and

CoC1(A+)d 2CoC1A CC1A C01 0+0 + 01 C
d d 2 2'

d

where C and C are the constants in (4.3) and (2.9), respectively, and

0 1- -

0 0 < (3. First consider k = 0. u = v0 E H (S ) u = v0 = 0 on F u F
i 0 Au 2'

-Au= Au on S 6 (cf. (4.3)), and Ijull 1 ,1  so we can apply Lemma 2,3
t H M )

12



to obtain

lIV I , = (lull ( 

(3 /2) at /1/22

-C1  XllulI' 5  + ,l Hull- 1
8 (sa -s/2)

< C1 max(1,6i ) LAIUIHOS + IIUIIH1 ]

H(S61) H (S 3 -$ 81/2)

_ C (X+l)Ilull

< C (A+1), provided 0 < (3 < 1 satisfies10

S1- /wi = 13 < (3;

thus (4.4), with k = 0, holds for this choice of C and d.

Suppose (4.4) holds for k = 0,1,..., -l, where 1 - i. We will show

holds for k = t and conclude by Induction that it holds for all k. We

begin by noting that v t H 1(S ). To see this it is sufficient to show that

lvll 6/2 < w. We easily see thatHi(S~i2

v= IC(1-t)v _ + r(vel~rliJvt H 1(S $6 /2 H (o 6/2

:5 C[11v,_IIIH + 11r(v _ E- )rlH1 ]'( S ( H (S 2

8//2 )1//

* 
C H 1 + IIr(v ) rl1H(S62

+ lr-l[r(v t-l E) lHO(S 6/2)

13

. ,? / / - . _+ r ve lIL/e H CS6: 1 2 ) HW CS6 1 2 ). , k ;, ....,._ . ,;...,...'.



:5- C 11v 1II1 + IIr(v ti) r 11(S6 1/2) 61/2

+ IIr(vt_ ) rr 1HO0 )

61/2

+ 11 (Vtl ril H 0cS S/2)

+[(v _) ) r o l H ] .
Oj/2)

From the induction hypothesis,

((S ) -3 (s /23 6j/2 (S 6j/2re~cc

2
% t-(ye 1 )r 2 (S

% (3 81/2
+ Ii - 2

0-l 1O~ /3 (S$8j/2)

< 00.

Since r _ 1 on S6j/2 we see that I <1 Cv 2 andH (S/) C e )
61/2 (3 6j/2

hence that 11velH 1 ( < . Now, since vt E H (S ) and because of (4.3)

we can apply Lemma 2.3 to get, for 0 < 13< 1 satisfying (3i < (3,

11 vil 1? 2 (S6/

f 61/2 /

CI  ma~l, ) 11r -2 r u +I 11 v,'v11r- 2OsI $1$12

14

.1

. ,' " ' ' * , . , v " o v ' - , . - , o % , - , - % - . % - " - " % , , -% ,'Il V_ _ % ' _ . ' . ' _ W . ' _ -_ - - _-I, _ - -2 " "I" • . -



-,- fAlIr r-2Cr 2u) }+ V0= 0 1r H(S at) R(S 6 -Sa6/2

Then we note that =I
(4.6) rt- 2 (r2U) = ve + 2ev1-1 + e(e-1)vt-2 '

( 4.7 ) Ir-2 2
(4.7 l~ (rU- ) 11  0

r H (S.,

lr (ue llr -2ru) 1110 "
- lrt-2 (r 2U)rIIHO(S - 8/2) r H (S6/2

(4 .8 ) 1i H0  = I(- e)v e + r (v i 0yel H 1s/2) - + v _(S /2

< (e-l)llv 1- l 0 + llr(ve - )rII H
H (S ) 62/2

- l H (S(

< ellve_ II(_ 1 (

61/2

Now, using (4.3), (4.6), (4.7), (4.8), and the induction hypothesis, we obtain

II re- 2 (r2U) re1  0

lob~ ~~ _ :5lr t-2 (r 2 U r IIIHo0( S 1-3/ + llr t-2C(r 2U) rIIIHo0( S612S1 1 -S / 22
+ Er 1 t 21r rO

r ~H (S - r S

-II eil HO(sa -S |/) + t 0(Sa -sa/

6+6/ 6(, 1)I r6,I H a /2

(31 61/2

15
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+ I vell 0 + 2 vII -1 1 S
SH (S- ) 11H (S/2

:53 1 1i v e i l l 2 2 + t- 2 1 ? 2 (S))
H((S sS S/2 1 6/2+< 1~ IIV t, 12 R$1 2 12 ( 6 2 + /2 )l vt 1 H 1 S 6 S 6 /+ lIv! 1+ 2eII ve I! 1IM

v'll (S s sa / ) 3{(sa-Sa/

+e(- 1 )IIv t2 11 1 (S -S

61~ -1/
e-ie-2 e -I e-2

V![C(3d -l+d 
f- 2 ) +Co(d+2do +d o  )].

Note that if e = 1, the terms d - 2 and dot- 2 are not present. Combining
0

(4.3), (4.5), and (4.9) we get

(4.10) 1 vtll W 2 (,cc 2 $ 2d t-2

f3 8j/2 4

e e-I e-2
+C C A(d o 2do +dO )+C C dO ]0 1 0 0 0 01 0

+. C C 1+ + 2CoCA

+ CCII 1

Ld2J

CoC (X+1)do 2CoC XC

+ d + d +d 2 j

16
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t[c
2j

=Ct! d t

rwr

thus (4.4), for k = t, holds with C and d as selected above. This

completes the proof of(4.4) for all k >- 0.

Next we show that there are constants C and d such that

1-2 ccu --Zkk
(4.11I) ilr j <5 Cd MZ0(S'/2)-

for all a with

lal = k+2 > 2 and a2 
< 2,

0

provided 0 < R . We, in fact, show that (4.11) holds with C = 3C and d =
1

max(6,d), where C and d are the constants in (4.4). Let k > 0. Then

there are three choices for a with lal = k+2 and a2 -< 2, namely a =

(al 2 ) with a =k and a 2 = 2, al = k+ and a2 = I, and a, = k +2

and a2 = 0. Thus (4.11) is equivalent to the following three inequalities:

k-2 --k(4.12a) 1hr u rk211 1 (S6/2 ,

k-i --k(4. 12b) Ir Uk+1 < Cdk,
r (S )(3 5j/2

k k(4.12c) I!r urk 211 (CdM, k0.
r Z(S 61/2

Recall that (4.4) states that

(k2 k 2 k 2
S.(4. 13) Ivkl ~ hr u k1 + 1jr (r Uk) rr11C

6j/2 (S3 /2  6/2

+ !r/3-1~ 
k  k ) ^2 ^
( r r o HU(S 6 /2)

17
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t r3-2 (kuk 1 2

H (S
< dk F

5 Cd k!.

(4.12a) follows immediately from (4.13). Next, consider (4.12b). For k = 0,

it follows directly from (4.13). Suppose now that (4.12b) holds for

0,1,...,k-1. Then, using (4.13), we have

k-i 3-1 k f3+k-2 I
1jr ur k+1 (r ( u rk) -E)kr rka0

f3 6j/2 H (S 12-

_< cdkk! + klk!

k -k-1

= Ck!(d +3dk-i )

5 2Ck!dk

--dk ,

which shows, by induction, that (4.12b) holds for all k. Finally consider

(4.12c). For k = 0, this follows directly from (4.13). Suppose now that

(4. 12c) holds for 0,1,...,k-i. Then, again using (4.13), we have

1k ItIr3  k r k r )
[r Urk2113 (S 1 (r urkr rr

- 2kr13+k- 1 Uk+1 - k(k-l)r13+k-2UrkHO

61/2

k --k-l --k-2
!5Cd k! +2Cd k! +Cd k'

k - k-i - k-2Ck!(d +6d +3d

< (3C)k!d

=Cd Md,

which shows that (4. 12c) holds for all k. This completes the proof of

(4.11).
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Using the identity

aj-2 2
A(ralu ) = r -(r Au8(2-2 .'a

=-Aral-2 (r2 u 2 ) .

which is valid for a2 > 2, we get

(4.14) rX-2u = -(r u 2) X -

-r-1 (r( u

- r Cj2 r u E C-
1-2cc ==k-Ar (r~ue_)r.

* Note that the number of 6-differentiations on the right side of (4.14) is two

less than on the left. Thus repeated application of (4.14) reduces the number

of 6-differentiations to 2, so that (4.11I) can be applied. In this way

one shows that there exists C and d so that ,.

(4.15) Ir' ) 3 , for lal = k+2 > 2,
BC5a /2)

0
*2 provided i < -

2 2,2
Now u E B (S/) if and only if u E H' (S ) and

13 61/2 (3 61/2
13+k-2D l k-""

(4.16) rI D uk 0 Cdk 2 (k-2)!,
H (S

Ia! = k, k = 2,3,...

for some C and d independent of k. (4.4), with k = 0, together with

2 2Lemma 2.1, shows that u E H' (S It thus remains to prove (4. 10-. L
t3 63/2 "

k 2 be fixed. By Lemma 2.2,
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(3+k-2 ( -
ijr DU11 < Cdk(k-2) for Ial = k

HO (S61/2

if and only if

k' -2-a' -k
(4.17) hjr D" U11 (S < Cd (k'-2)!]

for 2 5 I'1 = k' _< k. "

P

But from (4.15) we have

k' -2-a' P
2 a' ==k'-2 aur ) U1 i ( Cd -(k'-2)!,II rull 3P S61/2 -•

for 2 5 i a'I = k' S k,

which implies (4.17). Thus (4.16) holds for some C and d, and we conclude

2 0
that u e B2S ) for any 0 < (3 < 1 satisfying l- 7/w. = (3. < f3.

51/21 2 0

In this way we prove that u E 82 (S ) for 13. < 13 in the neiprLt,,r-
f3t 6j12  1 i

hood of each vertex A.. Combining this result with Lemma 4.1 we arrive at
1

the proof of Theorem 3. 1 in the case that L = -A and 02 is a straight

polygon. If L is the general operator in (3.2) and 0 is a straight

polygon, the result is obtained using the techniques in Section 3.2 of [5].

Finally, for the general case in which Q is a Lipschitz curved polygon wr"

employ the arguments used in the proof of Theorem 3.4 of [5] to get the

2
desired result. More specifically, by that technique we show that u E ,q2

Then, using Lemma 2.4,we get Theorem 3.1 In its full generality.

Remark 4.1. A careful analysis of the proof of Theorem 3.1 allows one t '

assess the dependence on A of the values at the constants C and d (cf.

( (4.16)), which are related to the smoothness of the eigenfunctions. One c I
see, for example, that d = dA +k, where d 2! 1 and k are independent of

A. This suggests that the higher eigenfunctions are less smooth than the

20
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lower ones, Although this is, in general, correct, we shall see in Section 6

that there are important exceptions. In the example treated there we will see

that of the first three eigenfunctions, the first is the roughest while the

third is the smoothest.

1'

vp

S'.



5. Basic Results on Eigenvalue and Eigenfunction Approximation

As we have seen in Section 3, the eigenvalue problems we are considering

have the form

Seek A e R, 0 * u e H 10 M) satisfying
(5.1I) 0~ )

(u,v) = Ab(u,v) V v e H0 M)

where the bilinear forms a and b are defined in (3.7) and (3.8).

We are interested in approximating the eigenpairs (A,u) of (5.1), and

toward this end we select a family of finite dimensional subspaces (p,k) of

H 1(), indexed by the parameters p = 1,2,... and k = 0,1..... satisfying
0

(5.2) inf I1u-xII --40 as p---> , uniformly in k,

XE9(p,k) H r)
for each U E H04)

(the reason for employing two parameters will be made clear later). Then we

consider the finite dimensional eigenvalue problem

Seek A(p,k) E P, 0 * u(p,k) E (p,k) satisfying
(5.3)

a(u(p,k),v) = A(p,k)b(u(p,k),v) V V E 9(p,k).

(5.3) has a sequence of eigenvalues

0 < A1 (p,k) < ... < AN(p,k)

and corresponding eigenfunctions

u (P,k),..... u (P,k)

satisfying

a(u.(p,k), u(p,k)) =6.

where N = N(p,k) = dim (p,k). The eigenpairs (X(p,k),u (p,k)) of (5.2)

are viewed as approximations to the eigenpairs (A.,u.) of (5.1). It is
1 1
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well-known (see, e.g., [7]) that

(5.4) A. 1 A.i(p,k), V p,k, i 1,..N,

and, as a consequence of (5.2) (see, e.g., [7]), that

lrn A .(p,k) = Ai, uniformly in k, for each i.

We now present the error estimates that describe the quality of the

*approximation (A.(p )u(pk) For the sake of simplicity, we state these

results in the case in which the eigenvalues A. of (5.1) are simple. For a

complete treatment of the general case we refer the reader to [7,8,9,10,11].

Let

IIUIiE =a v'au, u)

* and

11lU11b = 'b (u, u) .

Then we let

(5.5) C (p,k)= inf HU l- xIE'
XE§(p, k)

(5.6) v(p,k) = sup inf IITf-XII E'
fEH MQ) xe (p,k)

0

IfIE 1

and

*(5.7) n(p,k) = sup inf ITf-XIHE'

fEL 2(SI) XE (p,k) -

11 fH O=

*where T L (0)- H (Q2) is the solution operator corresponding to the
2 0

differential operator L introduced in (3.1), i.e., T is defined by

23



Tf H 0o(Q)
(5.8)

.a(Tf v) = b(f,v) V v E H 0 M).

The error estimates are given in terms of the quantities c (p,k), v(p,k),

and n(p,k). We note that all of these quantities approach zero as p-- m,

uniformly in k.

Theorem 5.1. Suppose A. is simple. Then there is a constant d. such that
1 1

(?L (P,k)-?L )/;k

(5.9) 1 -d.-q 2 (p,k) 5 -(pkA. I1 < 1 +d.v(p,k),I- 2 -
.(p,k)

a forall p and k,

and

IRu (p,k)-u i1 /Iju I1
(5.10) 1 < 11 +d i(P,k)

S e.(p,k) 1

for all p and k.

This result shows that for k fixed and p large, the eigenvalue error

(X (p, k)-A.)/A.

is nearly equal to

c . (p,k),
1

and the eigenfunction error

[u i (p, k)- u iIE /!I uiI E

is nearly equal to

c.(p,k).1

One of the goals of this paper is to make a computational study of these error

assessments in the practical range of the parameters p and k.

By the usual duality argument we have

24



t

'.1

(H. E) Ilu. E(p,k)u i? b  C7(p,k)IIu. -E(p,k)ui E'

where E(p,k)u is the a-orthogonal projection of u. onto (p,k), showing1

that Ilui - E (p ,k )uib o(IJu-E(p,k)u I11) A parallel result holds for the

eigenfunction error u -u i (p,k). We state this in

Theorem 5.2. Suppose A. is simple. Then there is a constant C. such that1 1

(5.12) [u. -ui(p,k)[ < Ci71(p,k)Iu i  u (p,k)II
1 i E

This result is proved in [11].
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6. Numerical Results and Their Analysis

In this section we consider a model problem, present numerical results

for it, and analyze these numerical results in light of the theoretical

results outlined in Section 5. We will consider the behavior of both the p

and h-p versions of the finite element method. The specific aim is to

assess the reliability of the theoretical results - which are of an asymptotic

nature - as a guide to practical computations - which may take place in the

pre-asymptotic phase - and to look for characteristic features of the numeri-

cal results which are not completely explained by known theoretical results.

The Model Problem

Let Q be the L-shaped domain shown in Figure 6. 1 and consider the

eigenvalue problem

-Au = Au,x

(6.1) u = o, x E = a.

A 2

A 5  A 4

X

A6  Al - XI

A 2  A3 I
Figure 6.1. The Domain 0
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Q is a Lipschitz straight polygon, as described in Section 2, and (6.1) is an

0
eigenvalue problem of the type described In Section 3. We are taking F = F.

The bilinear forms a and b are given by

[ f q r al a' ' u 8 '.

(6.2) a(u,v) xI -v d
L1 x2 +x2 jx2d

and

(6.3) b(u,v) f uv dx,

and the norms IlullE and Ilullb are given by

(6.4) 
IlullE = 2+ 12 dx 1

and

j~2 1/2

(6.5) lull b = dx

Thus HIullE Is the usual energy norm In H1 (0) and lullb the usual L2-norm.

Let

0 < A < .. /
1- 2

and

be the elgenvalues and eigenvectors of (6.1) and suppose

5,

a(u.,u ) = 6
ij

The model problem (6.1) was selected as a typical example of a problem

a domain with nonsmooth, but piecewise analytic, boundary. It will also be of

27
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interest in that it has some symmetries. (6.1) is a reasonable representation

of a large class of engineering problems.

The Regularity of the Eigenfunctions

On the basis of Theorem 3.1 we can make an assessment of the regularity

of the eigenfunctions of (6.1). It is easy to see that the eigenfunctions of

(6.1) are analytic at the vertices A. where w. r/2, J = 2. 6, but

3
that at Al where w i the eigenfunctions are singular. From Theorem

3.1, more specifically from the results of Section 4, we see that

2
(6.6) u. = M)1

where 0 = (ol ..... 36 ) with 0 < 32''.. 6 < 1 arbitrary (in fact, we can

take 2 ..... 6 = 0) and 1 - 1 < 1 < 1.

We can also use the more standard regularity theory for problems in

domains with corners (see, e.g., [12]) to analyze the singularities of the

eigenfunctions. We have, for example,

2/3
(6.7) u, = (C r sin 2/3 8)V+ uI

where t is cut-off function based at the point All 1 E H2 (Q2), (r,O)

are the polar coordinates depicted in Figure 6.1, and C 0. Obviously

S5/3 5/3
u 1 E Ha(Q), with a < 1+2/3, but u1 v H (0). Nevertheless u1 E B 2, ()

(Here Ho (9) is the fractional Sobolev space and B (0) is the Besov
2, c

space; see [13]). Not all the eigenfunctions have the form (6.7). In fact,

symmetry considerations show that u2  is antisymmetric with respect to the

line x = -y and hence

4/3
(6.8) u = (C2r sin 4/3 0)0+ 2

3a
where 2 E H (0) and C2  0, so that u E H(0), for any a < 1 +4/3,

2 2 2

P1



and u2 E B 4 32, M). Furthermore, u3  is antisymmetric with respect to both

axes and thus

(6.9) u3 ()1/2 1 sin nx sin nx
( 3  I 1 2

u3  is therefore analytic on .

We see here a typical phenomena for elgenvalue problems arising in

engineering, namely, because of the presence of various symmetries, higher

eigenfunctions may be smoother and hence lead to more accurate numerical

approximations than the lower ones. See also Remark 4.1.

The Finite Element Spaces

We consider the meshes shown in Figure 6.2. These are typical meshes for

the p and h-p versions of the finite element method for the approximation

of (6.1) since the leading singularities of the eigenfunctions are located at

vertex A (for more, see [2] and [14]). The meshes are characterized by the

number k of layers.

4.
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Figure 6.2. Meshes for the Finite Element Spaces.
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By S(p,k) we denote the finite element space consisting in polynomials

of degree p on a mesh with k layers. The functions on the trapezoidal

elements are defined, as usual, as pull-back polynomials of degree p based

on the standard bilinear map. The elements are of serendipity type Q' (see

(15]). The number of degrees of freedom of one (unconstrained) quadrilateral

element is

4p, for p < 4

4p + (p-2)(p -3) for p 4.2 '-

By (p,k) we denote the finite element space constrained by zero on r,

i.e., (p,k) = S(p,k) n H1 (Q). The number of degrees of freedom is defined
S0

to be the dimension of (p,k) and will be denoted by N(p,k). For large p

and k we obviously have

2 4

N(p,k) = (k+l)p

For small p and k this asymptotic formula is, of course, not very accu-

rate. Table 6.1 gives N(p,k) for various combinations of p and k under

consideration. The ratio N(p,k)/(k+l)p 2 ranges from .44 to 3.75 over

our range of p and k.

p 1 2 3 4j 5 ]-6- 7 8

0 0 2 4 9 17 28 42 59

1 5 18 31 53 84 124 173 231

2 10 34 58 97 151 220 304 403

3 15 50 85 141 218 316 435 575

Table 6.1. Number of Degrees of Freedom

1.



We recall that in the p version, accuracy is achieved by letting p--m

while k is held fixed (i.e., the mesh is held fixed). With the h-p

version, we simultaneously increase p and k. In the classical h version,

accuracy is achieved by refining the mesh while keeping p fixed. We will

concentrate on the p and h-p versions. We will not study the h version

nor assess the question of how the performance of elements of type Q'

(serendipity type), which we are using, compares with that of the full tensor

product elements (of type Q) or with that of triangular elements. Nevvc:'I-

less, we will consider the effect of distortion of elements for the p and

h-p versions. For k = 0, none of the elements are distorted, while for

k > 0 many elements are trapezoidal, and hence, distorted.

Approximation Properties of the Spaces §(p,k)

In (5.5) we introduced the quantity

c.(p,k) = inf lIu i- iE;1

XE Cp, k)

clearly

c (pk) Ilui -E(p,k)uI1E %

Ilu.-E(p,k)u.i1i i E
jul
OE

where E(p,kiu. is the a-orthogonal projection of u. onto S(p,k) a
1 1

that Iui HE = 1). We have seen in Section 5 that the accuracy of the finite

element approximation of the eigenpairs is determined mainly by ci(p,k). We

now present some theoretical and numerical results on the size of c.(p,k). We

first note that (5.2) holds for our choice of (p,k). To see this we note

that the C functions with compact support in 0 are dense in H Hence

condition (5.2) is equivalent to the approximation of smooth functions by the
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p version and the results of (16] lead to the desired conclusion.

From the approximation results in [16] and the regularity results (6.7) -

(6.9) we obtain

-4/3
(6.10a) C1 (P,k) :5 C 1(R) p -4/

-8/3

(6.10b) C2 (p,k) : C2(k)p 8

and

(6.10c) C3 (p,k) C 3(k)p for any c > 0.

These are estimates for the p-version of the finite element method on a fi>:

mesh; (6.10a) and (6.10b) are optimal, but (6.10c) is not. In fact, c3 (p,k)

decreases exponentially in p. The estimates (6.10) (including the refineme.t

of (6.10c) just mentioned) can obviously be written in terms of N(p,k). If

this is done c (p,k) and c2 (p,k) are seen to decrease algebraically and

r3 (p,k) exponentially in N(p,k).

If p 1 and k 0 are related by

a (k+l) : p 5 a (k+l),
.41 2

where 0 < a1 < a2, then (see [51 and [141)

'3
(6.11) C.(p,k) < C fNp,k)1r , for some C > 0 and 7 > 0.

I and C, in general, depend on i,a l, 2, and the domain, but are
1' 2'

2dent of N. (6.11), which follows from the fact that u. E B () for every
eve3

i (cf. (6.6)), is the basic estimate for the h-p version.

Figure 6.3 depicts the relative error c1 (p,k) for various k as a

-4/3function of p in double logarithmic scale. The rate p is shown as a

slope in the figure (cf. (6.lOa)). We see the typical behavior- of the p

version of the finite element method.
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Figure 6 3. The Relative Error c (p,k). j
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For the case k = 0 we see that the rate is very quickly in the asymptotic
-4/3

range p For k > 0 we see the typical reverse S-curve.

In the h-p version we simultaneously increase p and k, e.g.,

consider (p,k) = (3,0),(5,1),(7,3)..... We see that for this sequence, for

which N(p,k) = 4,84,435,..., the algebraic range typical for the p version

is absent and the error curve is convex with respect to N (see also Figure

6.7) as follows from (6.11).

20-%

0
0

Sz z _ _ _ _ _

-108
6

JLU
> 4

2 -

1 2 3 4 5 678 10
DEGREE p

Figure 6.4. The Reverse S-Curve Depicting the Behavior of the

p and h-p Versions of the Finite Element Method
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The reverse S-curve shown in Figure 6.4 characterizes the performance of

the p version. It has two parts, the pre-asymptotic phase where the curveI

turns down and essentially gives the behavior of the h-p version and the

asymptotic phase where the curve is a straight line (with slope -4/3 in C'ir

case). As k increases the asymptotic phase shifts toward higher p (seeI

* Figure 6.3).

-, To understand this behavior we note that the asymptotic phase begins with

that p at which the error due to the elements with vertices at A (whereI

the leading singularity occurs) starts to dominate the total error. Because

0 u. E B 2), the error decreases exponentially in the pre-asymptotic phase

during which it is not dominated by the elements at A 1,We further note that

0 fo k ow i~e, fr anunrfind msh)thesingularity greatly affects the

error and thus its influence shows up already for low p, whereas for k

high (i.e., for a refined mesh) the singularity has been resolve d by the mesh,i

hence has less effect on the total error, and its influence shows up only for

high p. Roughly speaking, the mesh is not properly refined, for the desired

* accuracy, if we are in the asymptotic phase of the p version (and the rateI

* of convergence is algebraic). For more details see [2].

Figure 6.5 presents the relative error c (p,k) for various k as a2I
function of p. Here the slope in the asymptotic phase of the p version is

-8/3 (cf. (6-10b)). For k =0 we are in the asymptotic range for p 2: 6,

but for k = 2 and 3 the asymptotic phase is not reached for the values of

p we are considering.
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10

.

Figure 6.3 shows an interesting phenomena occurring in practice, namely,

that in certain circumstances refinement can lead to an increase in the error.

We note that for fixed k, the inclusion §(k,p+l) D 9(k,p) is valid and

this leads to a decrease in error with increasing p, while for p fixed we
1-r

do not in general have (k+l,p) : (k,p) so that the error is not guaranteed

to decrease with increasing k. For low p, the major error occurs in the

largest elements and in these elements distortion deteriorates approximability

H1
in H (0). A priori, it is virtually impossible to predict this behavior. In

general, a conservative strategy for mesh refinement is probably advisable.

If one is interested only in very low accuracies, in certain situations an

unrefined mesh with undistorted elements could give better results than a

refined mesh with distorted elements. Comparing Figures 6.3 and 6.5 we see

the interesting feature that for p = 2 the refined mesh gives a better

result for the second eigenfunction, while for the first eigenfunctions the

unrefined mesh gives the better result. Because we usually compute several

eigenvalues with one mesh, we see that the conservative refinement strategy

mentioned above is advisable. (We remark that for triangular meshes the "p

situation is different since in this case the spaces are nested.)

Figure 6.6 shows the behavior of c3 (p,k). Since u3  is analytic, the

exponential rate occurs for all p (cf. (6.1Oc) and the following discus-

sion) and essentially no difference can be seen in c (p,k) as a function of
3

k 1 1. It is thus best to use an unrefined mesh.

I% N
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Since for k =0, u3  is symmetric in every element of the mesh, the error for

odd p+ 1 is the same as that for even p. We note, however, that in P
A

general such symmetries are difficult to predict a priori.

Remark 6.1. The numerical results we present require the values of the exact

eigenfunctions, which are not explicitly known. We obtained values for these

eigenfunctions by a careful extrapolation procedure which we believe leads to

reliable results.

Accuracy of the Approximate Eigenvalues

Consider the finite dimensional eigenvalue problem (5.3), where the

spaces §(p,k) are as described in the Subsection The Finite Element Spaces.

With this choice for (p,k), (5.3) defines the finite element method for the

approximation of the eigenpairs of (6.1). As In Section 5, denote by

(A (p,k),ui(p,k)) the eigenpairs of (5.3). These (A.(p,k),u.(p,k)) are

called the (finite element) approximate eigenpairs. As noted in Section 5,

A. : A.(p,k), V p,k, i = 1,.., N(p,k) = dim (p,k),
1 1 I I

and

lim A.(p,k) = A., uniformly in k, for each i.1 1
p-+C

We are interested here in the accuracy of the approximation A.(p,k) I
A • specifically we are interested in the comparison of (A.(p,k)-X.)/A. and1' 1 1 1

2
c.(p,k) (cf. (5.9)). Thus we definei

(Ai(p,k)-X.)/X.I I

(6.12) C I(p,k) c (p, k))c. (p, k)

From Theorem 5.1 and the facts that in our case u(p,k) : 0(p -4/3) and

-1
j(p,k) ! 5 (p , uniformly in k, (cf. [16]), we have

1-O(p-2) : C1 (p,k) l5 1+O(p-4/3), uniformly in k.

40 -'
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Table 6.2 gives the values of Ci(p,k) for various values of p and k.
1

pk 0 1 2 3

1 - 1.322 1.349 1.346

2 0.912 0.988 0.978 0.978

3 0.967 0.947 0.932 0.932

4 0.962 0.945 0.929 0.927
5 0.977 0.991 0.965 0.954

6 0.984 0.995 0.973 0.962

7 0.992 0.998 0.997 0.992

8 0.995 0.999 0.998 0.996

1 - 1.795 1.777 1.777

2 0.867 0.919 0.921 0.978

3 0.787 0.892 0.893 0.932

4 0.780 0.886 0.886 0.927A 2 5 2 0.871 0.932 0.931 0.934

6 0.948 0.932 0.929 0.962

7 0.966 0.963 0.962 0.991

8 0.975 0.974 0.975 0.995

1 2.692 2.740 2.740

2 - 1.126 1.128 1.128

3 1.150 1.121 1.124 1.124

4 0.831 0.902 0.902 0.901
3 5 0.831 0.899 0.899 0.898

6 0.905 0.904 0.905 0.904

7 0.905 0.928 0.928 0.928

8 0.942 0.946 0.946 0.946

Table 6.2. The Values of C (p,k).
Ji

We see that if c (p,k) < 5% (cf. Figures 6.3,6.5,6.6), then Ci(p.k)

and C.(p,k) < 1, and furthermore, Ci(p,k)---1 as p--.

The fact that C.(p,k) < 1 for most values of p and k can be
41
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explained In part as follows. Let

E(p,k)u = a(u, (p,k))u (p,k),

j=1

be the a-orthogonal projection onto (p,k) and let

N

E I(P,k)u = a(u,uj(p,k))uj(p,k).

j=i

Then we have

(6.13a) 1 1 1< C I i E 1 I b

" c2 (p,k) 2 I E (p2 k)u11l IE (Pc 2(P,k)
Iui b I, b

1u,-E1(p, 2

Ilui-E ( pk )u 112 11 1

AIu1-E(p,k)u 1 1IIE IPku1

X1IuE 2 2

Note that for i = 1, (6.13a) simplifies to

(A1  (p k)-A 1  )/A" _ l Ul-E(p, k)Ul J p , 2} -1

(6.13b) =1- iJE(puk)u 1 !I'. c2(p,k) 1Ju E(p,k)Ull~ 1'2 b

Table 6.3 shows the values of the right side of (6.13b) for k = 0 and
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)0

1 - 2.04

2 0.916 1.041

3 0.968 0.968

4 0.962 0.952

5 0.977 0.996

6 0.984 0.996

7 0.993 1.000

Table 6.3. The Values of the Right Side of (6.13b) (for A ).

We note two features:

The values in Table 6.3 are very accurate upper bounds for the correspond-

ing upper bounds in Table 6.2. This indicates that the inequality in

(6.13b) is a near equality.

There are two factors on the right side of (6.13b); the first is less than

1 and the second may be greater than 1. Since the values in Table 6.3

are mostly less than 1 we see that the first factor on the right side of

(6. 13b) is having a greater influence than the second factor. Thus the

cancellation in the first factor is causing the right side of (6.13b) to be

less than 1 and

Iul-E(p, 
11 2

1 1 b

111l-E Pk)Ull 2

1 1 E

plays the major role in determining the degree to which it Is less than I.

Although we don't have computed values for the right side of (6. 13a),

Table 6.4 shows the values of

I "ui-E(P' k)u i li

(6.14) 1-A. l b l E(p,k)u 11 } 1

Llui-E(pk)u l l
2
E  J I E
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for i = 3. We believe this expression is very close to the right side of

(6.13a) since E.(p,k)u i  E(p,k)u.. We again see the two features noted

above.

k
p 01

1 -

2 6.52

3 - 1.28

4 0.831 0.932

5 0.831 0.906

6 0.909 0.913 1"

7 0.909 0.941 '"

8 0.948 0.948 4

Table 6.4. The Values of the Right Side of (6.14) (for A3

Since C.(p,k) = 1, the accuracy of the eigenvalue approximation can be

read off from Figures 6.3, 6.5, and 6.6, changing the scale of the error by

squaring - a 10% approximation error corresponding to a 1% eigenvalue error, a

1% approximation error corresponding to a .01% eigenvalue error, etc.

Figure 6.7 shows the relative error in X(p,k) as a function of the
,1

number of degrees of freedom N(p,k). The polynomial degree p is also

shown. We see once more the typical S-curve.
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Figure 6.7. Relative Error in A (p,k).

From Figure 6.7 we note that the smallest eigenvalue A is approximated with

an accuracy of < 3% for N = 2 (corresponding to k = 0 and p = 2). From

Figures 6.5 and 6.6 and Table 6.1 we see that A2  and A3  are approximated
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with this accuracy for N = 9 (corresponding to k = 0 and p = 4). These

results illustrate a feature of eigenvalue approximation: reasonable accuracy

for the low eigenvalue can be achieved relatively cheaply

Accuracy of the Approximate Eigenfunctions

Now we turn to a discussion of the accuracy of the finite element approx-

imation of the eigenfunctions. As in the discussion of the accuracy of the

eigenvalues we define (cf. (5.10))

(6.15) D.(p,k) = Iu -ul(pk)IIE/Ilu i1E
1 c i(pk)

From Theorem 5.1 we have

(6.16) 1 S D.(p,k) S 1+O(p)-4/3
1

Table 6.5 presents the values of D.(p,k) for various values of p and k.
1

.
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,k 0 1 2 3

1 - 1.060 1.062 1.062

2 1.004 1.015 1.014 1.014

3 1.003 1.009 1.008 1.009

4 1.003 1.003 1.004 1.004

A1 5 1.002 1.001 1.001 1.001

6 1.001 1.000 1.001 1.001

7 1.001 1.000 1.000 1.000

8 1.000 1.000 1.000 1.000

1 - 1.116 1.115 1.115

2 1.041 1.038 1.038 1.038

3 1.049 1.047 1.047 1.047

4 1.009 1.015 1.015 1.016

5 1.006 1.001 1.002 1.002

6 1.001 1.001 1.002 1.002

7 1.000 1.000 1.000 1.000

8 1.000 1.000 1.000 1.000

1 - 1.163 1.166 1.166

2 - 1.039 1.040 1.040

3 1.414 1.041 1.041 1.041

4 1.002 1.019 1.019 1.019

A3  5 1.002 1.004 1.004 1.004

6 1.001 1.004 1.004 1.004

7 1.001 1.001 1.001 1. 001

8 1.000 1.000 1.000 1.000

Table 6.5. The Values of D.(p,k).1

We clearly see that Di(p,k) is very nearly 1 for the entire range of p

and k. Thus the accuracy of eigenfunction approximation can be read off from

Figures 6.3, 6.5, and 6.6. We also see that D. > 1, D. converges to I,
1 i

but not monotonically, and the convergence appears to be better than

.(p-4/3
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Relation Between the Eigenfunction Error in '.b and

-b

Since TI(p,k) : O(p ), (5.11) implies that

-1
(6.17) lui - E(p,k)u i 1b  Cp Iu. -E(pk)u I .

Table 6.6 gives the values of

pIjui-E(p,k)ui 11b/jui 1b
(6.18) Q.(p,k) = - -

SIlu -E(pk)uI 11E/lui E

S 0 1 2 3

1 - 0.688 0.691 0.691

2 0.745 0.909 0.907 0.907

3 0.811 1.135 1.1I53 1.154

4 1 067 1.016 1.108 1.117
5 1.055 0.516 0.920 1.047

6 1.030 0.478 0.956 1.142

7 0.886 0.520 0.481 0.625

I - 0.825 0.824 0.824

2 1.413 1.081 1.081 1.081

3 1.165 1.578 1.578 1.578

4 1.877 1.514 1.516 1.516
5 1.756 1.292 1.299 1.299

6 1.356 1.553 1.559 1.559

7 1.289 1.321 1.338 1.338

1 - 0.895 0.897 0.897

2 - 1.225 1.225 1.225

3 3.000 1.840 1.839 1.839

A3  4 1.754 1.774 1.777 1.777"A3

5 2.193 1.565 1.564 1.564

6 1.812 1.790 1.791 1.791

7 2.114 1.693 1.692 1.693

Table 6.6. Values of Qi(p,k).
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We see that the values of Qi(p,k) are nearly independent of p, which is

what we would expect from (6.17). Note that the first factor on the right

side of (6.14) is 1-[Qi(p,k)p -1]
2

Regarding eigenfunction error, (5.12) implies

(pui -ui(P,k)ijb < cp-llu i -ui(pk)IE.'

To illustrate this result we define

^plju ui-u i (p, k)jj b /{I u i 11b(6.20) Q (pk) =

1I Hui-u i (p, k)II E/IIui 1E

Table 6.7 presents values of Qi(p,k) for k = 0. The results are seen to be

similar to those in Table 6.6. We can thus conclude that the errors

u. -u.(p,k) and u. -E(p,k)u, have very similar behavior. This is true*1 1 1 1

in either of the norms 1'1b or and for rough as well as smooth

eigenfunctions, meshes with distorted as well as undistorted elements, and for

the entire range of p and k that was considered.

S AI A2  A3

1 - -- i
2 0.690 1.193 -

3 0.722 1.934 2.567

4 0.980 1.950 1.709

5 0.964 1.878 2.136

6 0.953 1.382 1.850

7 0.841 1.304 2.158

Table 6.7. Values of Qi(P,O).

Table 6.8 shows the values of

HI u i (p, k)jIE  I u ui -u i (p, k)jjIE
1 1 E1 and ,,

uIEui E
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where Iu.i 1 = lui(p,k)l1 = 1, for k = 0 and 1 and i = 1. We see (as we

should expect) that the first of these two values is the slightly smaller than

the second.

p IIu -ul (P,O)IIE IIu .-u (p,O) IE 11 u1-uI (P, 1)li 11E 1u1-u1 (P, 1)i11E

luIl IIuIllE Ilulli IuIlIE

1 - 0.666 0.800

2 0.174 0.176 0.339 0.352

3 0.149 0.150 0.235 0.239

4 0.132 0.133 0.088 0.089

5 0.109 0.109 0.032 0.033

6 0.086 0.086 0.026 0.026

7 0.071 0.072 0,020 0.021

8 0.062 0.062 0.017 0.017

Table 6.8. Comparison of the Errors in u1 (p,k) and

u 1(p,k) in 11.11 E '

Table 6.9 presents the corresponding errors in '*-1b' i.e.,

Iul-u (p,k)]b Inud l ul ( p k)]b
II 'b and

u1  b  Ilu 11ib

for k = 0 and 1. The table shows that the second of these quantities is

the smaller.

U,/
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U1 lu -U1 (P, 0) 11b 11u1-u (p,o)11b 11 u1-u1 (P, 1lib 11U1 -U1 (P, )lb

Ilu ll b bl II l ll lb

1 - - 0.3175 0.2831

2 0.0601 0.0590 0.1252 0.1175

3 0.0359 0.0345 0.0801 0.0771

4 0.0323 0.0314 0.0029 0.0226

5 0.0210 0.0202 0.0035 0.0034

6 0.0136 0.0131 0.0020 0.0020

7 0.0079 0.0075 0. 0005 0.0004

8 0.0068 0.0064 0.0004 0.0004

Table 6.9. Comparison of the Errors ul(p,k) and

u1 (pk) in .

In general, to measure the error between exact and approximate eigen-

functions we can associate the exact and approximate eigenfunctions together

in various ways. For example, we can associate u. and u.(p,k) or u. and1 1 1

u.(p,k). A third possibility is to associate ui(p,k) with u. = 3u., "where

P3 is chosen so that lu. -u (pk)I is minimal. This choice is of interest

since it also minimizes

R H ui-u (p,k)llb

11 f u -u (p, k)11E

Table 6. 10 shows the values of

Ru ut- u 1 (p, k)iiE  1ju 1-u 1 (p, k)jj b
and

N(U 1 NE 11 Ul 11b

Note that 1lUib < HU Ib.
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Iul-u1 (p, 0) HE iU 1-U 1 (p,0) Jib 11u 1-ul(p, 1)IIE 11U1-U1 (P, l) b
p

IUll E 1I U1 1b 111 I11E 1 i b

1 - - 0.808 0.2912

2 0.176 0.0590 0.354 0.1181

3 0.150 0.0345 0.240 0.0773

4 0.133 0.0314 0.089 0.0226

5 0.109 0.0202 0.032 0.0034

6 0.086 0.0131 0.026 0.0020

7 0.071 0.0075 0.021 0.0004

8 0.062 0.0064 0.017 0.0004

Table 6.10. Comparison of the Errors u-ul(p,k)
in I"I E  and 1"1-1b

We see that these different associations of exact and approximate eigenfunc-

tions lead to very similar values for the errors.

A Posteriori Estimates

Let (A,u) = (A.,u.) be a fixed eigenpair of (6.1) and let (A(p),u(p))1 1 '

(A.(p,k),u.(p,k)) be its approximation by the finite element method. We

suppress both i and k in this notation. Denote by z [p E H 1() the

exact solution of

{ Az[p] = A(p)u(p) in 1(6.21) |
(z [p] 0 on r,

[p] p
and then denote by z the finite element solution of (6.21) using elementsq

of degree q 2 p on the same mesh. Obviously z[p = u(p), i.e., u(p) is
p

the finite element approximation of z and 11z --zPIiE-0 as
q E[pp1 ][p] [iq-. Let c[p] = iz u(p) and c = lizq p

- u(P)NIEq q E"

It is shown in [17] that
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(6.22) IA(p)- < ( [p]2(1+(1))

so that if we have a reliable a posteriori estimate for c we then have a

reliable a posteriori estimate for I ) There are a number of ways toA

4. [p]obtain an a posteriori estimate for c . For a survey of relevant

literature we refer to [181. We now obtain such an estimate. Note that

(6.23) C [p] (1IP12 1p ()11

q q E up E

and for q > p,

[p]]2 = llz [p] - u(p)I_l11Z [p] zP ] 112

Cq Eq E"

We thus easily see that c[P] is increasing with q and that
q

(6.24) lim [ p]] iz[p] - u(p)I2E =

Hence

[p1 [p1
(6.25) C £Cq for q large;

qp

this is the desired a posteriori estimate for c From (6.22) we have

(6.26) IX(p)-Xl [ ] for p]<p]2

.To check the quality of the approximation in (6.26) we consider the quantity
.4

'-(6.27) 
Q[P] (tp -k/

2 )

,-, 
~ pp]f.

In Tables 6.11 and 6.12 the 
values of Q62 are presented for various values

of p and q and for - and -layer meshes for the first eigenvalue. 
Q[p]

is obtained by an extrapolation procedure.
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2 3 4 5 6 7

3 0. 167 .....

4 0.322 0. 198 ....

5 0.480 0,406 0.256 - -

6 0.6312 0.603 0.506 1.342 -

7 0.717 0.717 0.654 1.539 0.306 -

8 0.7659 0.783 0.734 1.662 0.491 0.268

00 0.843 0.892 0.912 0.925 0.939 0.952

Table 6.11. Values of Q[P] for a O-layer mesh and for = 1
q

q 1 2 3 4 5 6 7

2 0.553 -...

3 0.701 0.442 - - -

4 0.804 0.814 0.778 - - -

5 0.815 0.873 0.881 0.795 - -

6 0.816 0.877 0.889 0.855 0.388 -

7 0.817 0.879 0.893 0.885 0.617 0.379

8 0.817 0.880 0.895 0.900 0.722 0.552 0.089

O 0.818 0.881 0.897 0.910 0.920 0.926 0.932

Table 6.12. Values of Q[P] for a 1-layer mesh and for i = 1.
q

From the tables we see that Q[P] 1 1, for 1 << p, as predicted.

[p]Since z q is often cheaper to compute than the approximate eigenvalueq

A(p), we see that (6.26) provides a reasonable estimate for the accuracy of

A(p); in fact, for q = p+2 we will usually have
o W

A ( p ) - A / A 
<-  2 [ P ] 2
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